Round Filters in Dust Collection
Baghouses and Cartridge Collectors

Todd Hensley, CAFS

Menardi

Trenton, SC
Overview

- Pollution Control
- Collectors
- Filters
- Baghouse Conversions
Purpose of Pollution Control
Comply - Collect - Protect

- COMPLY with Regulations
 - EPA and OSHA

- COLLECT Product

- PROTECT Resources
 - Equipment and Occupants
Pollution Control Components

- Pickup Points
- Emission Source
- Ductwork
- Dust Collector
- Removal System
- Air Mover / Fan
- Exhaust / Stack
Pollution Control Components

- Pickup Points
- Ductwork
- Dust Collector
- Removal System
- Air Mover / Fan
- Exhaust / Stack
Pollution Control Components

- Dust Collectors
 - 0.1 to 100 gr/ cfm
- Air Filters
 - 0.001 gr/ cfm
- Source
 - Industrial Ventilation
 - www.ACGIH.org
 - $100

Dust Collector Types
- Electrostatic Precipitators (ESP)
- Wet Collectors
- Dry Centrifugal
- Fabric Collectors
Fabric Collectors

- Baghouse
 - Shaker - Cleans Off Line
 - Reverse Air - Cleans On Line
 - Pulse Jet - Cleans On Line
Fabric Collectors

- Baghouse
 - Shaker - Cleans Off Line
 - Reverse Air - Cleans On Line
 - Pulse Jet - Cleans On Line

- Cartridge Collector
 - Up flow
 - Cross flow / Up flow
 - Down flow / Parallel flow
Pulse Jet Components

- Inlet Distribution
- Hopper
- Housing
- Tubesheet
- Plenum
- Cleaning System
 - Blow Pipe / Others
 - Venturi
Cartridge Collector Components

- Inlet Distribution
- Hopper
- Housing
- Tubesheet
- Plenum
- Cleaning System
Collector Considerations

- Air Properties
 - Air Flow
 - Temperature
 - Moisture
 - Explosivity
 - Chemistry

- Dust Properties
 - Particle Size / Shape
 - Grain Load

- Space Constraints
 - Footprint
 - Height

- Capital Cost

- Operating Costs
 - Media
 - Compressed Air
 - Energy / ΔP

- AIR TO CLOTH
Collector Considerations

- Air Velocity
 - Inlet Velocity
 - Can Velocity
 - Interstitial Velocity
 - Media Velocity
 - Air to Cloth / A:C
 - Bags 4 to 8 fpm
 - Pleated 2 to 6 fpm
Collector Considerations

- Air Velocity
 - Inlet Velocity
 - Can Velocity
 - Interstitial Velocity
 - Media Velocity

Inlet Duct = 12\text{\textdegree} Round = 0.8 SF
Inlet Velocity = 3000 CFM / 0.8 SF = 3750 FPM
Collector Considerations

- Air Velocity
 - Inlet Velocity
 - Can Velocity
 - Interstitial Velocity
 - Media Velocity

Can Velocity = 3000 CFM / 11.1 SF = 270 FPM
Collector Considerations

Air Velocity
- Inlet Velocity
- Can Velocity
- Interstitial Velocity
- Media Velocity

Interstitial Velocity = \frac{3000}{6.2} = 480 \text{ FPM}
Interstitial = 1.8 \times \text{Can Velocity}

Bag Bottom Area
= \text{Qty} \times \pi \times \text{Radius}^2
= 25 \times 3.14 \times (3\text{ft})^2
= 4.9 \text{ Sq Feet}

Interstitial Area
= 11.1 - 4.9 \text{ Sq Feet}
= 6.2 \text{ Sq Feet}
Collector Considerations

Air Velocity
- Inlet Velocity
- Can Velocity
- Interstitial Velocity
- Media Velocity

Bag Area = \(\text{Qty} \times \pi \times \text{Diameter} \times \text{Length} \)
= \(25 \times 3.14 \times 6^\text{in} \times 120^\text{in} \)
= 393 \text{ Sq Feet}

Media Velocity = \(\frac{3000}{393} \) ≈ 7.6 FPM
Collector Considerations

Air Velocity

- Inlet Velocity 3750 FPM
- Can Velocity 270 FPM
- Interstitial Velocity 480 FPM
- Media Velocity 7.6 FPM
Collector Considerations

- **Baghouses**
 - Can Change
 - Media Type
 - Media Area
 - Filter Type
 - Length
 - Cannot Change
 - Tubesheet Hole

- **Cartridge Collectors**
 - Can Change
 - Media Type
 - Media Area
 - Materials
 - Cannot Change
 - Envelope Size
 - Cap Design
Filter Considerations
Bag Fabric

- Felted Fiber
 - Polypropylene (PP)
 - Polyester (PET)
 - Aramid (Nomex)
 - Polyphenylene Sulfide (PPS)
 - Polyimide (P84)
 - Fiberglass

- Basis Weight: oz / sq yd

- Finish
 - Singed / Glazed
 - Metallized
 - Epitropic
 - HydroOleophobic
 - Membrane

- Support
 - Fiber
 - Scrim
Filter Considerations
Fiber Properties

<table>
<thead>
<tr>
<th>Fiber</th>
<th>Available In</th>
<th>Tensile Strength</th>
<th>Abrasion Resistance</th>
<th>Acid Resistance</th>
<th>Alkali Resistance</th>
<th>Supports Combustion</th>
<th>Max. Operating Temp. °F (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Continuous</td>
</tr>
<tr>
<td>Cotton</td>
<td>Woven</td>
<td>Good</td>
<td>Good</td>
<td>Poor</td>
<td>Good</td>
<td>Yes</td>
<td>180 (82)</td>
</tr>
<tr>
<td>Polypropylene</td>
<td>Woven, Felted</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Yes</td>
<td>170 (77)</td>
</tr>
<tr>
<td>Nylon</td>
<td>Woven</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Poor</td>
<td>Excellent</td>
<td>Yes</td>
<td>200 (93)</td>
</tr>
<tr>
<td>Wool</td>
<td>Woven, Felted</td>
<td>Poor</td>
<td>Fair</td>
<td>Good</td>
<td>Poor</td>
<td>No</td>
<td>200 (93)</td>
</tr>
<tr>
<td>Homopolymer Acrylic</td>
<td>Woven, Felted</td>
<td>Good</td>
<td>Good</td>
<td>Very Good</td>
<td>Fair</td>
<td>Yes</td>
<td>260 (127)</td>
</tr>
<tr>
<td>Copolymer Acrylic</td>
<td>Woven, Felted</td>
<td>Average</td>
<td>Fair</td>
<td>Good</td>
<td>Fair</td>
<td>Yes</td>
<td>230 (110)</td>
</tr>
<tr>
<td>Polyester</td>
<td>Woven, Felted, Knit, Spun Bonded</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Fair</td>
<td>Fair</td>
<td>Yes</td>
<td>275 (135)</td>
</tr>
<tr>
<td>Aramid</td>
<td>Woven, Felted</td>
<td>Very Good</td>
<td>Excellent</td>
<td>Fair</td>
<td>Good</td>
<td>No</td>
<td>375 (191)</td>
</tr>
<tr>
<td>Teflon®</td>
<td>Woven, Felted</td>
<td>Average</td>
<td>Fair</td>
<td>Excellent</td>
<td>Excellent</td>
<td>No</td>
<td>450 (232)</td>
</tr>
<tr>
<td>Fiberglass</td>
<td>Woven, Felted</td>
<td>Excellent</td>
<td>Fair</td>
<td>Good</td>
<td>Fair</td>
<td>No</td>
<td>500 (260)</td>
</tr>
<tr>
<td>Ryton®</td>
<td>Woven, Felted</td>
<td>Very Good</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Very Good</td>
<td>No</td>
<td>375 (191)</td>
</tr>
<tr>
<td>P84®</td>
<td>Felted</td>
<td>Very Good</td>
<td>Excellent</td>
<td>Very Good</td>
<td>Fair</td>
<td>No</td>
<td>500 (260)</td>
</tr>
</tbody>
</table>

Teflon is a trademark of E. I. DuPont Company
Ryton is a trademark of Amoco Fabrics
P-84 is a trademark of Lenzing Corporation
Filter Considerations

Pleated Bag

Fabric
- Spunbond Polyester
 - Epitropic / Metallized
 - HydroOleophobic
 - Membrane
- Pleatable Felts
 - Membrane
- Area
 - Pleat Count / Height
 - Limited Length
 - Felt Thickness

Construction
- Installation
 - Top Load
 - Bottom Load
 - Tubesheet Seal
- Materials
 - Potting Compounds
 - Core
- Retainer
 - Bands
Filter Considerations

Cartridge

Fabric
- Spunbond Polyester
 - Epitropic / Metallized
 - HydroOleophobic
 - Membrane
- Pleatable Felts
 - Membrane
- Area
 - Pleat Count / Height
 - Limited Length
 - Felt Thickness

Construction
- Installation
 - Open / Open
 - Open / Closed
 - Flanged Cap
- Materials
 - Potting Compounds
 - Core
- Retainer
 - Bands
 - Cage
Baghouse Conversion

Original with 3000 CFM
- 25 PET Felt Bags
- 6" OD x 120" OAL
- Fabric 393 SF
- Inlet 3750 CFM
- Interstitial 480 FPM
- Media 7.6 FPM

Problems
- High Pressure Drop
- Bag Wear
Baghouse Conversion

- **Original**
 - 25 Bags
 - 6\(^\prime\) OD x 120\(^\prime\) OAL
 - 393 Sq Feet

- **Pleated Bags**
 - 6\(^\prime\) OD x 72\(^\prime\) OAL
 - 45 Pleats at 1\(^\prime\)
 - 1,078 Sq Feet
 - 175\% more fabric
Baghouse Conversion

- **Original**
 - 25 Bags
 - 6" OD x 120" OAL
 - 393 Sq Feet

- **Pleated Bags**
 - 6" OD x 72" OAL
 - 45 Pleats at 1"
 - 1,078 Sq Feet
 - 175% more fabric

- **Replace all of the bags**
 - Lower Air to Cloth
 - From 7.6 to 2.8 FPM
 - Gain Efficiency
 - Better Media
 - Lower A:C
 - Lower Pressure Drop
 - Better Pulse Cleaning
 - Drop Out Zone Adds 4'
Baghouse Conversion

- Replace 10 and Plug 15
 - Lower Air to Cloth
 - From 7.6 to 7.0 FPM
 - Gain Efficiency
 - Better Media
 - Lower A:C
 - Cut Interstitial Velocity
 - From 480 to 330 FPM
 - Drop Out Zone adds 4'
Questions